207 research outputs found

    Excited state dynamics of liquid water: Insight from the dissociation reaction following two-photon excitation

    Get PDF
    We use transient absorption spectroscopy to monitor the ionization and dissociation products following two-photon excitation of pure liquid water. The two decay mechanisms occur with similar yield for an excitation energy of 9.3 eV, whereas the major channel at 8.3 eV is dissociation. The geminate recombination kinetics of the H and OH fragments, which can be followed in the transient absorption probed at 267 nm, provide a window on the dissociation dynamics at the lower excitation energy. Modeling the OH geminate recombination indicates that the dissociating H atoms have enough kinetic energy to escape the solvent cage and one or two additional solvent shells. The average initial separation of H and OH fragments is 0.7+-0.2 nm. Our observation suggests that the hydrogen bonding environment does not prevent direct dissociation of an O-H bond in the excited state. We discuss the implications of our measurement for the excited state dynamics of liquid water and explore the role of those dynamics in the ionization mechanism at low excitation energies

    Theoretical Studies of Spectroscopy and Dynamics of Hydrated Electrons.

    Get PDF

    Ammoniated electron as a solvent stabilized multimer radical anion

    Full text link
    The excess electron in liquid ammonia ("ammoniated electron") is commonly viewed as a cavity electron in which the s-type wave function fills the interstitial void between 6-9 ammonia molecules. Here we examine an alternative model in which the ammoniated electron is regarded as a solvent stabilized multimer radical anion, as was originally suggested by Symons [Chem. Soc. Rev. 1976, 5, 337]. In this model, most of the excess electron density resides in the frontier orbitals of N atoms in the ammonia molecules forming the solvation cavity; a fraction of this spin density is transferred to the molecules in the second solvation shell. The cavity is formed due to the repulsion between negatively charged solvent molecules. Using density functional theory calculations for small ammonia cluster anions in the gas phase, it is demonstrated that such core anions would semi-quantitatively account for the observed pattern of Knight shifts for 1-H and 14-N nuclei observed by NMR spectroscopy and the downshifted stretching and bending modes observed by infrared spectroscopy. It is speculated that the excess electrons in other aprotic solvents (but not in water and alcohols) might be, in this respect, analogous to the ammoniated electron, with substantial transfer of the spin density into the frontier N and C orbitals of methyl, amino, and amide groups forming the solvation cavity.Comment: 34 pages, 12 figures; to be submitted to J Phys Chem

    Dark matter search results from the PICO-60 CF3I bubble chamber

    Full text link
    New data are reported from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 36.8 kg of CF3I and located in the SNOLAB underground laboratory. PICO-60 is the largest bubble chamber to search for dark matter to date. With an analyzed exposure of 92.8 livedays, PICO-60 exhibits the same excellent background rejection observed in smaller bubble chambers. Alpha decays in PICO-60 exhibit frequency-dependent acoustic calorimetry, similar but not identical to that reported recently in a C3F8 bubble chamber. PICO-60 also observes a large population of unknown background events, exhibiting acoustic, spatial, and timing behaviors inconsistent with those expected from a dark matter signal. These behaviors allow for analysis cuts to remove all background events while retaining 48.2% of the exposure. Stringent limits on weakly interacting massive particles interacting via spin-dependent proton and spin-independent processes are set, and most interpretations of the DAMA/LIBRA modulation signal as dark matter interacting with iodine nuclei are ruled out.The PICO Collaboration would like to thank SNOLAB and its staff for providing an exceptional underground laboratory space and invaluable technical support. We acknowledge technical assistance from Fermilab's Computing, Particle Physics, and Accelerator Divisions and from A. Behnke at IUSB. We thank V. Gluscevic and S. McDermott for useful conversations and their assistance with the DMDD code package. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award No. DE-SC-0012161. Fermi National Accelerator Laboratory is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359. Part of the research described in this paper was conducted under the Ultra Sensitive Nuclear Measurements Initiative at Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy. We acknowledge the National Science Foundation for their support including Grants No. PHY-1242637, No. PHY-0919526, and No. PHY-1205987. We acknowledge the support of the National Sciences and Engineering Research Council of Canada (NSERC) and the Canada Foundation for Innovation (CFI). We thank the Kavli Institute for Cosmological Physics at the University of Chicago. We were also supported by the Spanish Ministerio de Economia y Competitividad, Consolider MultiDark CSD2009-00064 Grant. We thank the Department of Atomic Energy (DAE), Government of India, under the project CAPP-II at SINP, Kolkata. We acknowledge the Czech Ministry of Education, Youth and Sports, Grant No. LM2011027.Amole, C.; Ardid Ramírez, M.; Asner, DM.; Baxter, D.; Behnke, E.; Bhattacharjee, P.; Borsodi, H.... (2016). Dark matter search results from the PICO-60 CF3I bubble chamber. Physical Review D. 93(5):1-14. https://doi.org/10.1103/PhysRevD.93.052014S114935Komatsu, E., Dunkley, J., Nolta, M. R., Bennett, C. L., Gold, B., Hinshaw, G., … Wright, E. L. (2009). FIVE-YEARWILKINSON MICROWAVE ANISOTROPY PROBEOBSERVATIONS: COSMOLOGICAL INTERPRETATION. The Astrophysical Journal Supplement Series, 180(2), 330-376. doi:10.1088/0067-0049/180/2/330Jungman, G., Kamionkowski, M., & Griest, K. (1996). Supersymmetric dark matter. Physics Reports, 267(5-6), 195-373. doi:10.1016/0370-1573(95)00058-5Bertone, G., Hooper, D., & Silk, J. (2005). Particle dark matter: evidence, candidates and constraints. Physics Reports, 405(5-6), 279-390. doi:10.1016/j.physrep.2004.08.031Feng, J. L. (2010). Dark Matter Candidates from Particle Physics and Methods of Detection. Annual Review of Astronomy and Astrophysics, 48(1), 495-545. doi:10.1146/annurev-astro-082708-101659Goodman, M. W., & Witten, E. (1985). Detectability of certain dark-matter candidates. Physical Review D, 31(12), 3059-3063. doi:10.1103/physrevd.31.3059Bolte, W. J., Collar, J. I., Crisler, M., Hall, J., Holmgren, D., Nakazawa, D., … Vieira, J. D. (2007). Development of bubble chambers with enhanced stability and sensitivity to low-energy nuclear recoils. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 577(3), 569-573. doi:10.1016/j.nima.2007.04.149Behnke, E., Collar, J. I., Cooper, P. S., Crum, K., Crisler, M., Hu, M., … Tschirhart, R. (2008). Spin-Dependent WIMP Limits from a Bubble Chamber. Science, 319(5865), 933-936. doi:10.1126/science.1149999Behnke, E., Behnke, J., Brice, S. J., Broemmelsiek, D., Collar, J. I., … Cooper, P. S. (2011). Improved Limits on Spin-Dependent WIMP-Proton Interactions from a Two LiterCF3IBubble Chamber. Physical Review Letters, 106(2). doi:10.1103/physrevlett.106.021303Behnke, E., Behnke, J., Brice, S. J., Broemmelsiek, D., Collar, J. I., … Conner, A. (2012). First dark matter search results from a 4-kgCF3Ibubble chamber operated in a deep underground site. Physical Review D, 86(5). doi:10.1103/physrevd.86.052001Archambault, S., Aubin, F., Auger, M., Behnke, E., Beltran, B., Clark, K., … Zacek, V. (2009). Dark matter spin-dependent limits for WIMP interactions on 19F by PICASSO. Physics Letters B, 682(2), 185-192. doi:10.1016/j.physletb.2009.11.019Archambault, S., Behnke, E., Bhattacharjee, P., Bhattacharya, S., Dai, X., Das, M., … Zacek, V. (2012). Constraints on low-mass WIMP interactions on 19F from PICASSO. Physics Letters B, 711(2), 153-161. doi:10.1016/j.physletb.2012.03.078Felizardo, M., Girard, T. A., Morlat, T., Fernandes, A. C., Ramos, A. R., Marques, J. G., … Marques, R. (2014). The SIMPLE Phase II dark matter search. Physical Review D, 89(7). doi:10.1103/physrevd.89.072013Amole, C., Ardid, M., Asner, D. M., Baxter, D., Behnke, E., Bhattacharjee, P., … Broemmelsiek, D. (2015). Dark Matter Search Results from the PICO-2LC3F8Bubble Chamber. Physical Review Letters, 114(23). doi:10.1103/physrevlett.114.231302Duncan, F., Noble, A. J., & Sinclair, D. (2010). The Construction and Anticipated Science of SNOLAB. Annual Review of Nuclear and Particle Science, 60(1), 163-180. doi:10.1146/annurev.nucl.012809.104513Glaser, D. A., & Rahm, D. C. (1955). Characteristics of Bubble Chambers. Physical Review, 97(2), 474-479. doi:10.1103/physrev.97.474Seitz, F. (1958). On the Theory of the Bubble Chamber. Physics of Fluids, 1(1), 2. doi:10.1063/1.1724333Collar, J. I. (2013). Applications of anY88/BePhotoneutron Calibration Source to Dark Matter and Neutrino Experiments. Physical Review Letters, 110(21). doi:10.1103/physrevlett.110.211101Behnke, E., Benjamin, T., Brice, S. J., Broemmelsiek, D., Collar, J. I., … Cooper, P. S. (2013). Direct measurement of the bubble-nucleation energy threshold in aCF3Ibubble chamber. Physical Review D, 88(2). doi:10.1103/physrevd.88.021101Archambault, S., Aubin, F., Auger, M., Beleshi, M., Behnke, E., … Behnke, J. (2011). New insights into particle detection with superheated liquids. New Journal of Physics, 13(4), 043006. doi:10.1088/1367-2630/13/4/043006Wilson, W. B., Perry, R. T., Charlton, W. S., Parish, T. A., & Shores, E. F. (2005). SOURCES: a code for calculating (α,n), spontaneous fission, and delayed neutron sources and spectra. Radiation Protection Dosimetry, 115(1-4), 117-121. doi:10.1093/rpd/nci260Mei, D.-M., & Hime, A. (2006). Muon-induced background study for underground laboratories. Physical Review D, 73(5). doi:10.1103/physrevd.73.053004Aharmim, B., Ahmed, S. N., Andersen, T. C., Anthony, A. E., Barros, N., Beier, E. W., … Biller, S. D. (2009). Measurement of the cosmic ray and neutrino-induced muon flux at the Sudbury neutrino observatory. Physical Review D, 80(1). doi:10.1103/physrevd.80.012001Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., … Barrand, G. (2003). Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303. doi:10.1016/s0168-9002(03)01368-8Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce Dubois, P., Asai, M., … Chytracek, R. (2006). Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53(1), 270-278. doi:10.1109/tns.2006.869826Aubin, F., Auger, M., Genest, M.-H., Giroux, G., Gornea, R., Faust, R., … Storey, C. (2008). Discrimination of nuclear recoils from alpha particles with superheated liquids. New Journal of Physics, 10(10), 103017. doi:10.1088/1367-2630/10/10/103017Yellin, S. (2002). Finding an upper limit in the presence of an unknown background. Physical Review D, 66(3). doi:10.1103/physrevd.66.032005Lewin, J. D., & Smith, P. F. (1996). Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astroparticle Physics, 6(1), 87-112. doi:10.1016/s0927-6505(96)00047-3Fitzpatrick, A. L., & Zurek, K. M. (2010). Dark moments and the DAMA-CoGeNT puzzle. Physical Review D, 82(7). doi:10.1103/physrevd.82.075004Fitzpatrick, A. L., Haxton, W., Katz, E., Lubbers, N., & Xu, Y. (2013). The effective field theory of dark matter direct detection. Journal of Cosmology and Astroparticle Physics, 2013(02), 004-004. doi:10.1088/1475-7516/2013/02/004Anand, N., Fitzpatrick, A. L., & Haxton, W. C. (2014). Weakly interacting massive particle-nucleus elastic scattering response. Physical Review C, 89(6). doi:10.1103/physrevc.89.065501Gresham, M. I., & Zurek, K. M. (2014). Effect of nuclear response functions in dark matter direct detection. Physical Review D, 89(12). doi:10.1103/physrevd.89.123521Gluscevic, V., Gresham, M. I., McDermott, S. D., Peter, A. H. G., & Zurek, K. M. (2015). Identifying the theory of dark matter with direct detection. Journal of Cosmology and Astroparticle Physics, 2015(12), 057-057. doi:10.1088/1475-7516/2015/12/057Akerib, D. S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., Bedikian, S., … Bradley, A. (2014). First Results from the LUX Dark Matter Experiment at the Sanford Underground Research Facility. Physical Review Letters, 112(9). doi:10.1103/physrevlett.112.091303Aprile, E., Alfonsi, M., Arisaka, K., Arneodo, F., Balan, C., Baudis, L., … Bokeloh, K. (2012). Dark Matter Results from 225 Live Days of XENON100 Data. Physical Review Letters, 109(18). doi:10.1103/physrevlett.109.181301Agnese, R., Anderson, A. J., Asai, M., Balakishiyeva, D., Barker, D., Basu Thakur, R., … Bowles, M. A. (2015). Improved WIMP-search reach of the CDMS II germanium data. Physical Review D, 92(7). doi:10.1103/physrevd.92.072003Aprile, E., Alfonsi, M., Arisaka, K., Arneodo, F., Balan, C., Baudis, L., … Bokeloh, K. (2013). Limits on Spin-Dependent WIMP-Nucleon Cross Sections from 225 Live Days of XENON100 Data. Physical Review Letters, 111(2). doi:10.1103/physrevlett.111.021301Aartsen, M. G., Abbasi, R., Abdou, Y., Ackermann, M., Adams, J., Aguilar, J. A., … Bai, X. (2013). Search for Dark Matter Annihilations in the Sun with the 79-String IceCube Detector. Physical Review Letters, 110(13). doi:10.1103/physrevlett.110.131302Tanaka, T., Abe, K., Hayato, Y., Iida, T., Kameda, J., Koshio, Y., … Nakahata, M. (2011). AN INDIRECT SEARCH FOR WEAKLY INTERACTING MASSIVE PARTICLES IN THE SUN USING 3109.6 DAYS OF UPWARD-GOING MUONS IN SUPER-KAMIOKANDE. The Astrophysical Journal, 742(2), 78. doi:10.1088/0004-637x/742/2/78Choi, K., Abe, K., Haga, Y., Hayato, Y., Iyogi, K., Kameda, J., … Nakahata, M. (2015). Search for Neutrinos from Annihilation of Captured Low-Mass Dark Matter Particles in the Sun by Super-Kamiokande. Physical Review Letters, 114(14). doi:10.1103/physrevlett.114.141301Khachatryan, V., Sirunyan, A. M., Tumasyan, A., Adam, W., Bergauer, T., Dragicevic, M., … Frühwirth, R. (2015). Search for dark matter, extra dimensions, and unparticles in monojet events in proton–proton collisions at s=8\sqrt{s} = 8 s = 8 TeV\,{\mathrm{TeV}}\, TeV. The European Physical Journal C, 75(5). doi:10.1140/epjc/s10052-015-3451-4First results on dark matter annihilation in the Sun using the ANTARES neutrino telescope. (2013). Journal of Cosmology and Astroparticle Physics, 2013(11), 032-032. doi:10.1088/1475-7516/2013/11/032Demidov, S., & Suvorova, O. (2010). Annihilation of NMSSM neutralinos in the Sun and neutrino telescope limits. Journal of Cosmology and Astroparticle Physics, 2010(06), 018-018. doi:10.1088/1475-7516/2010/06/018Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Belolaptikov, I. A., Bogorodsky, D. Y., … Demidov, S. V. (2015). Search for neutrino emission from relic dark matter in the sun with the Baikal NT200 detector. Astroparticle Physics, 62, 12-20. doi:10.1016/j.astropartphys.2014.07.006Busoni, G., De Simone, A., Morgante, E., & Riotto, A. (2014). On the validity of the effective field theory for dark matter searches at the LHC. Physics Letters B, 728, 412-421. doi:10.1016/j.physletb.2013.11.069Buchmueller, O., Dolan, M. J., & McCabe, C. (2014). Beyond effective field theory for dark matter searches at the LHC. Journal of High Energy Physics, 2014(1). doi:10.1007/jhep01(2014)025Aad, G., Abbott, B., Abdallah, J., Abdel Khalek, S., Abdinov, O., … AbouZeid, O. S. (2015). Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at s=8 \sqrt{s}=8~ s = 8 TeV with the ATLAS detector. The European Physical Journal C, 75(7). doi:10.1140/epjc/s10052-015-3517-3Aad, G., Abbott, B., Abdallah, J., Abdel Khalek, S., Abdinov, O., … AbouZeid, O. S. (2015). Search for dark matter in events with heavy quarks and missing transverse momentum in pppp p p collisions with the ATLAS detector. The European Physical Journal C, 75(2). doi:10.1140/epjc/s10052-015-3306-zRoszkowski, L., Austri, R. R. de, & Trotta, R. (2007). Implications for the Constrained MSSM from a new prediction forb→sγ. Journal of High Energy Physics, 2007(07), 075-075. doi:10.1088/1126-6708/2007/07/075Bernabei, R., Belli, P., Cappella, F., Caracciolo, V., Castellano, S., Cerulli, R., … Ye, Z. P. (2013). Final model independent result of DAMA/LIBRA–phase1. The European Physical Journal C, 73(12). doi:10.1140/epjc/s10052-013-2648-7Chang, S., Weiner, N., & Yavin, I. (2010). Magnetic inelastic dark matter. Physical Review D, 82(12). doi:10.1103/physrevd.82.125011Barello, G., Chang, S., & Newby, C. A. (2014). A model independent approach to inelastic dark matter scattering. Physical Review D, 90(9). doi:10.1103/physrevd.90.094027Kim, S. C., Bhang, H., Choi, J. H., Kang, W. G., Kim, B. H., Kim, H. J., … Yue, Q. (2012). New Limits on Interactions between Weakly Interacting Massive Particles and Nucleons Obtained with CsI(Tl) Crystal Detectors. Physical Review Letters, 108(18). doi:10.1103/physrevlett.108.181301Collar, J. I. (2013). Quenching and channeling of nuclear recoils in NaI(Tl): Implications for dark-matter searches. Physical Review C, 88(3). doi:10.1103/physrevc.88.035806Bernabei, R., Belli, P., Montecchia, F., Nozzoli, F., Cappella, F., Incicchitti, A., … Zhang, Y. J. (2007). Possible implications of the channeling effect in NaI(Tl) crystals. The European Physical Journal C, 53(2), 205-213. doi:10.1140/epjc/s10052-007-0479-0Bozorgnia, N., Gelmini, G. B., & Gondolo, P. (2010). Channeling in direct dark matter detection I: channeling fraction in NaI (Tl) crystals. Journal of Cosmology and Astroparticle Physics, 2010(11), 019-019. doi:10.1088/1475-7516/2010/11/019BERNABEI, R., BELLI, P., d’ ANGELO, S., DI MARCO, A., MONTECCHIA, F., CAPPELLA, F., … YE, Z. P. (2013). DARK MATTER INVESTIGATION BY DAMA AT GRAN SASSO. International Journal of Modern Physics A, 28(16), 1330022. doi:10.1142/s0217751x1330022
    corecore